Synthesis of Novel Butterfly-shaped Fe₂SeP and Fe₂SeAs Clusters *via* Reactions of [Et₃NH][(μ -RSe)(μ -CO)Fe₂(CO)₆] with Some Electrophiles

J. Chem. Research (S), 1998, 494 J. Chem. Research (M), 1998, 2168–2174

Li-Cheng Song,* Chao-Guo Yan, Qing-Mei Hu and Xiang-Dong Qin

Department of Chemistry, Nankai University, Tianjin 300071, China

Reactions of $[Et_3NH][(\mu-RSe)(\mu-CO)Fe_2(CO)_6$ with some phosphorus and arsenic chlorides afforded seven new butterfly-shaped Fe_2SeP and Fe_2SeAs clusters $(\mu-RSe)(\mu-R'R''P)Fe_2(CO)_6$ and $(\mu-RSe)(\mu-Ph_2As)Fe_2(CO)_6$, respectively.

Although the reactions of $[Et_3NH][(\mu-RS)(\mu-CO)Fe_2(CO)_6$ (1)³ with P- and As-containing electrophiles have been previously studied and utilized in the synthesis of butterflyshaped Fe₂SP and Fe₂SAs clusters, those of $[Et_3NH]$ - $[(\mu-RSe)(\mu-CO)Fe_2(CO)_6]$ (2)⁷ with P- and As-containing electrophiles to obtain the corresponding Fe₂SeP and Fe₂SeAs clusters have not been reported so far.

Recently, we found that $[Et_3NH][(\mu-RSe)(\mu-CO)Fe_2(CO)_6]$ (R = Ph, *p*-MeC₆H₄) (2), prepared from Fe₃(CO)₁₂, Et₃N and RSeH, reacted *in situ* with PhPCl₂, Ph₂PCl or Ph₂AsCl in THF or with PCl₃ in THF–Et₂O at room temperature to give butterfly-shaped Fe₂SeP clusters (μ -RSe)(μ -R'R"P)-Fe₂(CO)₆ (3a–e) and Fe₂SeAs clusters (μ -RSe)(μ -Ph₂As)-Fe₂(CO)₆ (4a–b) (Scheme 1 and Table 1).

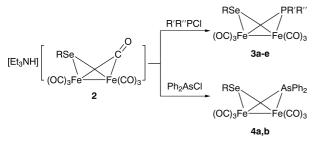
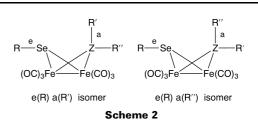



Table 1 Yields of 3a-e and 4a,b

Product	R	R′	R″	Yield (%)
3a	Ph	CI	CI	23
3b	p-MeC ₆ H ₄	CI	CI	22
3c	Ph	CI	Ph	55
3d	<i>p</i> -MeC ₆ H₄	CI	Ph	53
3e	<i>p</i> -MeC ₆ H₄	Ph	Ph	23
4a	Ph	_		21
4b	<i>p</i> -MeC ₆ H₄			27

In principle, clusters of the type $(\mu$ -RSe) $(\mu$ -R'R"Z)-Fe₂(CO)₆, similar to $(\mu$ -RS) $(\mu$ -R'R"Z)Fe₂(CO)₆ (Z = P,¹⁰ As¹¹) would have two isomers, in which the R group is attached to the Se atom by an equatorial bond (Scheme 2), since other isomers in which the R group is attached to the

Se atom by an axial bond have too strong steric repulsions between the two axial groups R and R' or R and R''.

However, for clusters **3a,b,e** and **4a,b** only one isomer exists since R' = R'', which is in good agreement with the ¹H NMR signals of the *p*-Me substituent in **3b**, **3e** or **4b** being a singlet at δ 2.28, 2.27 and 2.29, respectively. Although **3c** and **3d** could have two isomers [for example, for **3d**, e(*p*-MeC₆H₄)a(Cl) and e(*p*-MeC₆H₄)a(Ph)], the ¹H NMR spectrum of the *p*-Me substituent in **3d** showed only a singlet at δ 2.34. This implies that **3c** and **3d** exist as either one isomer or as two isomers which undergo fast exchange on the ¹H NMR timescale.

We are grateful to the National Natural Science Foundation of China, the State Key Laboratory of Structural Chemistry and the State Key Laboratory of Elemento-Organic Chemistry for financial support of this work.

Techniques used: IR, ¹H NMR, mass spectrometry

Schemes: 3

References: 18

Received, 7th April 1998; Accepted, 5th June 1998 Paper E/8/02652A

References cited in this synopsis

- 3 D. Seyferth, D. P. Rauschke, W. M. Davis, M. Cowie and A. D. Hunter, *Organometallics*, 1994, **13**, 3834.
- 7 L.-C. Song, C.-G. Yan, Q.-M. Hu, R.-J. Wang, T. C. W. Mak and X.-Y. Huang, *Organometallics*, 1996, **15**, 1535.
- 10 L.-C. Song, Y. Li, Q.-M. Hu, R.-J. Wang, W.-J. Zhao, Y.-Q. Fan, S.-J. Zhang, X.-Q. Lu and G.-W. Li, *Chem. J. Chin. Univ.*, 1990, **11**, 154.
- 11 L.-C. Song, R.-J. Wang, Y. Li, H.-G. Wang and J.-T. Wang, *Acta Chim. Sin.*, 1990, 48, 867.

^{*}To receive any correspondence.